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Abstract— A key to producing reliable engine diagnostics 
and prognostics resides in the fusion of different processing 
techniques. Fusion of techniques has been shown to 
improve diagnostic performance while simultaneously 
reducing false alarms. Presented here is an approach that 
fuses a physical model called STORM (Self Tuning On-
board, Real-time engine Model) developed by Pratt & 
Whitney, with an empirical neural net model to provide a 
unique hybrid model called enhanced STORM (eSTORM) 
for engine diagnostics. STORM is a piecewise linear 
approximation of the engine cycle deck. Though STORM 
provides significant improvement over existing real-time 
engine model methods, there are several effects that impact 
engine performance that STORM does not capture. 
Integrating an empirical model with STORM accommodates 
the modeling errors. This paper describes the development 
of eSTORM for a Pratt & Whitney high bypass turbofan 
engine. Results of using STORM and eSTORM on 
simulated engine data are presented and compared. 
eSTORM is shown to work extremely well in reducing 
STORM modeling errors and biases for the conditions 
considered. 
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1. INTRODUCTION 
A key to producing reliable engine diagnostics and 
prognostics resides in the fusion of sensor data, information, 
and / or processing algorithms. There are many different 
approaches that support the development of such systems. 
These approaches can be generalized into three basic 
classes. First are physical models. Second are rule-of-thumb 
systems developed and refined by human engineering and 
maintenance experts. Third are empirical models that ‘learn’ 
from examination of real data that contain nominal and 
known fault conditions. Each of those techniques has 

unique strengths and weaknesses. Presented here is an 
approach that fuses a physical model with an empirical 
model to provide enhanced diagnostic and prognostic 
capabilities. Figure 1 shows a high level flow diagram of 
the hybrid system architecture. Fusion of techniques has 
been shown to improve detection and classification 
performance while simultaneously reducing false alarms 
[1,2]. Fusion of techniques is a way to move towards the 
utopian goal of perfect detection / classification and zero 
false alarms. 

Figure 1 The hybrid model architecture 

Here we consider a real-time physics-based model of a large 
high bypass turbofan engine. The model (called STORM: 
Self Tuning On-board, Real-time engine Model) is a 
piecewise linear approximation of the engine cycle deck. 
STORM contains two primary components: 1) a nominal 
state variable model (SVM) representation of the engine 
cycle, and 2) a subsystem that processes the SVM and real 
engine output differences (residuals) to adapt (or "tune") the 
SVM to off-nominal conditions. A Kalman Filter observer 
is used to estimate a set of Tuners that capture engine 
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deterioration as a measure of the percentage of off-nominal 
operation (or percentage degradation) for major rotating 
components within the engine gas path. This real-time 
model can be run at any point in the operational flight 
envelope. 

The STORM concept provides a significant improvement 
over existing real-time engine model methods and has been 
adapted to a variety of Pratt & Whitney engines. However, 
there are several effects that impact engine performance that 
STORM does not capture. In fact variances often exist 
between real engine outputs and their corresponding engine 
Deck counterparts. Currently, STORM's "Tuners" will adapt 
to account for these modeling errors, but the diagnostic 
information will be corrupted by the modeling error. 

Integrating an empirical model with STORM offers an 
approach for addressing this class of modeling errors. The 
empirical model is developed from residuals derived from 
the true engine outputs and STORM predicted outputs. The 
empirical model used here is neural network based. The 
empirical neural network based model is fused with the 
physics-based STORM model to form a unique hybrid 
model of the engine. We refer to this model as the enhanced 
STORM model or eSTORM. The objective of including the 
empirical element is to capture the unmodeled errors as well 
as specific engine differences so as to eliminate their 
corruptive impact on the diagnostic information contained 
in the STORM Tuners. 

This paper describes the development of eSTORM. Results 
of using STORM and eSTORM on simulated engine data 
are presented and compared. eSTORM is shown to work 
extremely well in reducing STORM modeling errors and 
biases for the conditions considered. 

2. MODEL DEVELOPMENT 
Described here is the overall model development starting 
with STORM, followed by details of the empirical model, 
and finishing with the integration and “training” to develop 
the full eSTORM model.  

"Real engine" data is required for training and 
demonstration of the eSTORM concept. There are a variety 
of problems associated with dealing with real data, the 
primary one being "is the data any good?" To have control 
over the data and to address training issues simulated data 
should be used. However in order to demonstrate the 
concepts, the model used for simulation of "real engine" 
data needs to be independent from the one used to develop 
STORM. For "real engine" simulations we used the D01 
Customer Deck to represent an F-117 engine. STORM was 
developed using the D03 F-117 Simulation Deck. Both the 
D01 and D03 Decks are physics based models of the real 
F117 engine. However they are models for different 
versions of the engine. The difference is similar to that 
expected to exist between a physical engine and model (due 
to modeling errors) and allow for the benefit of eSTORM to 
be demonstrated.  

Figure 2 eSTORM system development 
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*ŷ

y

Inputs {u}



 

 3 

 
To train the system we used the flow diagram shown in 
Figure 2 with the Switch=1 setting. There are several 
steps involved in eSTORM training. They are:  

1. Run the "Real engine" simulation (i.e. the D01 
Customer Deck) to generate measured outputs {y}. 

2. Run the nominal STORM SVM with Tuning disabled 
(i.e., the input residuals are set to {r}=0) to generate 
estimated outputs }ˆ{y  . Note: the residual vector is 
the difference between the measured outputs {y} and 
the estimated outputs }ˆ{y . 

3. Compute and store the residuals {r} along with the 
inputs {u}. 

4. Train the neural network using the stored residuals 
and inputs to create an empirical model to predict the 
estimated residuals }ˆ{r . 

Testing then follows using the trained neural network in 
the eSTORM system shown in Figure 2 with the 
Switch=2 setting. This is the same as the system shown in 
Figure 1. Details of the various steps are given in 
subsequent sections. 

STORM 

Figure 3 shows the physics-based STORM model. 
STORM contains two primary components: 1) a nominal 
state variable model (SVM) of the Pratt-Whitney engine, 
and 2) a subsystem that adapts (tunes) the SVM under 
off-nominal conditions. The SVM uses correction factor 
theory [3] to cover the full flight envelope. As a baseline, 
the SVM reflects nominal engine performance at a sea-
level-static (SLS) flight condition, but the SVM also 
accepts engine component deterioration estimates 
(“Tuners”) and state estimates from the Tuner module as 
inputs. This feature enables the SVM to modify its output 
estimates to reflect off-nominal engine performance. 

Figure 3 The STORM Physics-Based Model 

The Engine Model subsystem computes the engine's 
output response (rotor speeds, pressures, temperatures, 

airflows, thrust, etc.) to input stimuli (fuel flow, bleeds, 
etc.). While the baseline model is intended to represent a 
nominal engine, it also accepts and responds to inputs 
describing incremental changes to nominal engine 
component performance (e.g., deterioration). The Tuner 
module generates estimates of these incremental 
performance shifts and the Engine Model incorporates 
these effects into the engine’s predicted output response 
vector in Figure 3. 

The SVM used in this application is derived from a 
detailed, component-level aerothermodynamic model of 
the engine cycle. The resulting onboard model consists of 
two pieces:  

1. A piecewise linear dynamic state variable model, that 
operates in corrected parameter space. The dynamic 
model contains seven states (two rotor speeds and 
five metal temperatures), thirteen inputs (engine 
controls, installation effects, and deterioration 
effects), and twenty outputs (pressures, temperatures, 
airflows, and thrust). The reference flight condition 
for the dynamic model is sea-level-static (SLS). 

2. A tabulated set of steady-state points (commonly 
referred to as the SVM base-points) that capture the 
inherent large-signal nonlinear behavior of the engine 
cycle at a reference flight condition. The reference 
flight condition is SLS. Each element of the state, 
input, and output vectors contain an associated base-
point. 

There are several second order effects that are not 
captured by the SVM that have an impact on gas turbine 
rotating machinery performance. These effects include: 

o Tip clearance effects on flow capacity and 
efficiency, 

o Reynolds effects, 

o Blade untwist effects on fan performance. 

Since these three phenomena are not modeled by the 
SVM, their impact on model outputs will be reflected in 
the Tuner module’s off-nominal performance estimates. 
Though this adaptation mechanism will reduce the SVM 
output estimation error, the diagnostic information 
reflected in the Tuner outputs will become corrupt. One 
of the objectives of the empirical model addition is to 
capture these unmodeled performance effects and 
eliminate their impact on the diagnostic information 
contained in the onboard model Tuners. 

A standard set of so-called correction factors are used to 
adjust the SVM to points in the engine’s operational flight 
envelope that differ from the SLS reference point [3]. 
Though correction factor theory is predominately based 
on steady-state phenomena, the concept has been 
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extended to cover the time-scale variations experienced at 
various points in the operational flight envelope during 
dynamic engine operation. In the work presented here, the 
effect of correction factor accuracy was not an issue since 
all the performance evaluations of STORM with 
empirical model addition were performed at the SLS 
flight condition. Although not an issue here, future work 
will address additional flight conditions where correction 
factor accuracy will be important. 

An additional feature incorporated into the engine model 
is the Deterioration Performance subsystem. This 
subsystem processes the Tuner input vector in order to 
separate the engine deterioration performance estimates 
from the control input offsets. In this application, the 
Tuner vector contains six elements, five incremental 
component performance estimates (a vector that is output 
from the SVM that measures a component’s performance 
deterioration), and a fuel flow bias offset estimate. The 
fuel flow compensation is mandatory because of the 
general inaccuracy of fuel flow measurement systems. 
Since fuel flow is the dominant input to the engine model 
and inputs are assumed to be deterministic, a fuel flow 
offset correction must be applied to avoid significant 
corruption of the engine performance tuners.  

Online STORM Update 

The recursive estimation technique used in this 
application is based on the linearized Kalman filter 
concept [4]. The model linearization approach partitions a 
state variable model (SVM) into steady state (base-point) 
and dynamic components. The steady state model 
schedules were based on low rotor speed and ram 
pressure ratio. The piecewise-linear dynamic models were 
scheduled as a function of low rotor speed at a predefined 
reference flight condition. In the F-117 application, the 
reference flight condition corresponds to Sea-Level-Static 
(SLS). Using the SVM framework, a Kalman filter design 
model is formulated and linked to the functional 
specification of the real-time algorithm that updates the 
SVM as the engine lifecycle evolves. The computational 
tools for constructing a filter design model and 
synthesizing a Kalman filter utilized the capabilities of 
the MATLAB/SIMULINK™ environment. 

Since the advent of full-authority digital engine controls 
(FADEC) in the early 1980’s, the engine control system 
design community has pursued the concept of a robust 
engine model for a myriad of reasons. Enhancement of 
performance in engine control systems, fault detection, 
isolation, & accommodation systems, and diagnostic 
systems are obvious focal points of this interest. 
However, the largest obstacle to incorporating model-
based designs in gas turbine systems has been the 
accuracy issue, i.e., how precisely does the model track 

actual engine behavior. Two factors make significant 
contributions to this problem. First of all, we know that 
there is a degree of uncertainty that exists between any 
model and the actual engine. Parametric uncertainties, 
ignored dynamics, measurement uncertainties, etc. are 
realities that designers must cope with in creating model-
based systems. Design techniques like robust H∞ 
estimation can be used to systematically include these 
effects into the synthesis process. Unfortunately, methods 
used to achieve robustness to these uncertainties extract 
penalties on estimation performance, especially where 
insensitivity to large uncertainties must be 
accommodated. Another factor influencing the robust 
model design in gas turbine application is the desire to 
track the component life cycle evolution of these systems. 
Integrating this information into the model will 
significantly enhance the predictive fidelity of the model, 
but it also provides a database for diagnosing and 
maintaining the gas turbine system. Therefore, an 
alternative approach to solving the robust engine model 
problem is to estimate a set of signals that reflect the 
differences between the nominal model and the actual 
engine. This set of signals is then used to update the 
nominal engine model so that estimation performance is 
maintained. The Pratt & Whitney STORM implements 
this approach. 

The implementation of the STORM algorithm requires a 
recursive estimation technique. Historically, the technique 
chosen in gas turbine applications has been the linearized 
Kalman filter [5]. There are several reasons for this. First 
of all, other candidate nonlinear estimators have 
complexity issues and require computational resources 
that are beyond the capabilities of current 
microprocessors used in real-time gas turbine 
applications. Secondly, techniques like the extended 
Kalman filter require explicit (closed-form) knowledge of 
the nonlinearities in the state and output equations. In 
current gas turbine modeling technology, this information 
is not available. Hence, a considerable amount of work 
has been done in the last twenty-five years to develop 
accurate linearized SVMs for model-based control and 
diagnostic applications. The basic concept is 
straightforward. The designer needs to build a steady-
state model that accurately predicts nominal performance. 
This model captures the nonlinearities of the component 
maps and other major nonlinearities associated with the 
aerothermodynamic processes. Based on this steady-state 
operating line, a perturbational dynamic model can be 
built that reflects the off-nominal behavior of the system.  

This approach has been successfully applied in a variety 
of military engine programs. These programs 
demonstrated the concept for low-bypass, augmented 
turbofan cycles. For the past eight years, Pratt has been 



 

 5 

transferring STORM technology to high-bypass, turbofan 
engine applications. The design concepts described here 
reflect the lessons learned in porting the STORM 
technology to high-bypass turbofan engines [6]. 

The steady-state model contains a set of base-points, 
{xb,ub,yb,zb}, tabulated for a series of points along the 
engine operating-line from idle to full power at a given 
reference flight condition. Throughout the remainder of 
this section, x refers to the engine state vector, u to the 
deterministic engine input vector, y to the measured 
engine outputs, and z to the uninstrumented engine 
outputs. The reference flight condition is arbitrary, but all 
STORM applications to date have selected the SLS flight 
condition as the reference point. The table lookup 
procedure for the base-point model requires a bivariate 
linear interpolation algorithm. The independent variables 
in this procedure are corrected low rotor speed and ram 
pressure ratio (Pt2/Pamb). Corrected low rotor speed, 
NLc, is a state in the SVM, however, the ram-ratio is 
based on filtered measurements from the gas turbine 
instrumentation suite and is directly correlated with Mach 
number. The steady-state model used in this application 
contains thirty-five NLc points at five different ram 
pressure ratios.  

The dynamic engine model reflects perturbational effects 
about a steady-state equilibrium condition. The complete 
piecewise linear model is a collection of points generated 
along the nominal operating line from idle to full power. 
In this application, the set of linearized models is 
scheduled on the corrected low rotor speed (NLc) state 
variable. Hence, the perturbational points that 
characterize the linearized model coincide with the 
steady-state model at the Sea-Level Static flight 
condition. The set of engine partials generated for this 
application differs somewhat from those used in the 
conventional control system design process. For the 
Kalman filter design model, we need to include the 
impact that component deterioration has upon the engine 
states and outputs. One approach to modeling this effect 
treats component deterioration as a system input; 
however, unlike the externally supplied engine inputs, we 
cannot directly measure component deterioration, and 
therefore, these inputs are unknown. We can express in 
mathematical terms the state and output equations 
associated with this unknown input problem as 

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )

δ δ δ
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In these equations the δ-symbol explicitly indicates that 
the quantity it precedes is a small signal perturbation from 

an equilibrium condition, e.g., δ = − bx x x . By definition 
the d-term, the deterioration input, represents a small 
deviation from nominal component performance and 
therefore does not require the δ-symbol designation. The 
upper-case symbols represent the Jacobians of the 
nonlinear engine model. 

Given an engine model like the one in Eq (1), we need to 
formulate a methodology for dealing with the unknown 
input d(t). There are two approaches to solving this 
problem. In one case, we can formulate a state estimation 
problem that decouples the unknown inputs from the state 
estimation error, i.e., the so-called Unknown Input 
Observer (UIO) problem [7]. This approach attempts to 
preserve estimation accuracy without directly calculating 
the unknown input vector. However, knowing d(t) has 
intrinsic value in an engine diagnostic sense. Hence, the 
second approach of directly estimating the level of off-
nominal engine performance is preferable in STORM 
applications. 

To solve this estimation problem, we need to assume a 
model that fits the deterioration process and can also be 
used effectively within the Kalman filter design 
framework. If we temporarily exclude foreign object 
damage (FOD) from the deterioration model, then an 
accurate depiction of the engine life-cycle aging is the so-
called slowly varying constant model [8]. To properly 
formulate this model requires a stochastic (random) 
process framework. In this framework, integrating a white 
noise source produces a slowly varying, random constant, 
i.e., the so-called random walk or Wiener process. 
Expressing this model in terms of a state space realization 
results in  
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where w(t) denotes a white noise vector process with an 
intensity matrix of Q, the symbol E{•} represents the 
statistical expectation operator, and δ(•) is a delta 
function. Since the function δ(t1-t2) is 0 unless t1 = t2, the 
white noise process is uncorrelated in time. Moreover, a 
white noise process is a Gaussian, zero-mean process by 
definition. Therefore, specifying the Q-matrix completely 
characterizes the random process for our model of 
component deterioration. For this study, we modeled the 
deterioration of the major rotating machinery components 
in the gas path, i.e., fan, low-pressure compressor (LPC), 
high-pressure compressor (HPC), and high-pressure 
turbine (HPT). 

In both commercial and military gas turbine applications, 
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using the Bill-of-Material (control) instrumentation suite 
produces a measurement vector that includes rotor spool 
speeds, temperatures, and pressures at key engine 
stations. Each of these measurements contains a non-
deterministic component, i.e., noise. Hence, the engine 
output measurement relationship in Equation (1) needs to 
be modified to include this term, so that 

{ }
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The measurement noise is denoted by v(t) and is assumed 
to be a white, Gaussian, vector process with a covariance 
matrix of R δ(t). Note that the random process driving the 
deterioration input, w(t), and the measurement noise are 
assumed to be uncorrelated in this problem formulation.  

To formulate the Kalman filter design model we merged 
the engine and deterioration models to form one model. 
The resultant augmented state vector contains the normal 
engine states as well as the deterioration inputs, d(t). A 
compact way of representing this mathematically in the 
state and output equations is 
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The KF subscript that appears in Eq (4) denotes the 
composite Kalman filter design matrices. Details of this 
formulation can be found in [6]. 

Using the augmented state equations in Eq (4), we now 
have a system model that the Kalman filter design 
machinery can use for producing a recursive state 
estimator. The objective is to estimate x(t) and d(t), and 
then, to compute y(t) and z(t) using the output equations. 
The Kalman filter formulation minimizes the mean-square 
state estimation error induced by random disturbances 
and measurement noise in linear systems. In more generic 
terms, the Kalman filter provides a systematic framework 
for establishing a trade-off between measured information 
and a process model so that an optimal linear estimate of 
the process outputs can be produced. 

In order to achieve this performance goal, the Kalman 
filter generates an output error, i.e., the so-called filter 
residual vector, which is defined by 
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where the hat symbol above y, x, and d denotes the 
Kalman filter estimate of the output measurement, engine 
state, and tuner vectors, respectively. Note that the second 
equality in Eq (5) expresses the output measurement 
estimate in terms of the augmented state estimates, the 
deterministic input vector, and the output base-point, yb. 
The Kalman filter applies a weighting factor to the 
residual vector and then feeds back this error signal to the 
state equation, i.e.,  
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2
~B differs from 2B  of equation (1) in that the columns 
associated with the input biases have been removed. 
Hence, the state derivative prediction will be based not 
only on the current state and input, but also on the 
weighted, output estimation error from the previous state 

update. The weighting factor, 
 

=  
 

1

2

K
K

K
, is the so-called 

Kalman filter gain matrix.  

Empirical Model Development 

The empirical model used here is a neural network. 
Artificial neural networks (ANN) are an attempt to model 
the brain by the dense interconnection of a large set of 
simple processing elements. Neural nets have proven 
useful in a variety of areas: detection, classification, 
multidimensional function approximation, and predictive 
modeling of data. They are ideal for developing non-
linear models to map input data to outputs. They can be 
used for classification-base diagnostics as well as 
prognostics. 

Neural nets are “trained” by presenting examples of 
input/output pairs of data. For most applications, the 
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output data has been “labeled” as to the correct class or 
function response. The parameters in the neural net are 
adjusted during training until the neural net classification 
performance reaches an acceptable level 

The neural net in eSTORM is used to solve a function 
approximation problem. The neural net forms an 
empirical model for the (possibly non-linear) transfer 
function between the inputs {u} and outputs {r} of the 
system. Following Narendra [9], we develop a non-linear 
autoregressive, moving-average (NARMA) model to 
solve the system identification problem. The general 
NARMA model takes the form: 

[ ])(,),1(),(),1()(ˆ qttptttr k −−−−Ψ= uurr KK      (7) 

where 
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    (8) 

and ( )tr kˆ is the estimate of the k-th residual output at time 

t+1, ( )tr m is the m-th residual output at time t, and 
( )nu t is the n-th input at time t. With no loss of generality 

each output is modeled separately. There are a total of 
nout outputs and nin inputs. p is the order of the 
autoregressive portion of the model and q is the order of 
the moving average part. Ψ is a function that represents 
the particular type of processing applied to its' arguments 
to generate the target outputs. We have examined three 
choices for Ψ: 1) multi-layer perceptron (MLP) neural 
network, 2) radial basis function (RBF) neural network, 
and 3) a support vector machine used for regression 
(SVR) with a Gaussian kernel [10]. The results that gave 
the minimum mean square error were found using the 
MLP neural network. Only MLP results are reported here. 

For the development we used the NETLAB toolbox that is 
available on the web [11] for training of the neural 
networks and initial validation of the processing. For the 
eSTORM implemented in the SIMULINK graphical 
language, we have used some of the functions that are in 
the MATLAb neural net toolbox. This implementation 
produces code with much faster running speeds when 
compared to the NETLAB implementation. Note that the 
functions required for the MLP neural net implementation 
can be synthesized with standard Simulink blocks. 

 

 

Testing 

Testing was performed using the trained neural network 
in the eSTORM system shown in Figure 1. In this study, 
the magnitude of the )(ˆ tPd performance degradation 
vector provides a metric on the impact made by the 
empirical model in the eSTORM system. This is 
demonstrated by executing the simulation with and 
without the neural net compensation active. 

3. SYSTEM TRAINING 
The training procedure described above was used to 
develop an eSTORM system for approximately 
piecewise-linear throttle operations at sea level static 
(SLS) conditions. The "real engine" was simulated using 
the D01 Customer Deck. STORM’s input requirements 
include: 

1. eight external engine control signals, 
2. eight engine output measurements, 
3. three inlet condition measurements, 
4. STORM enable indicator.  

The eSTORM system in this initial phase of development 
was targeted toward piecewise-linear (stationary) throttle 
operations. In order to evaluate a wide range of 
'stationary' throttle operations, data was generated using 
very slow throttle movements to ramp the throttle from 
idle to maximum and back to idle. The training data 
throttle operation started at the minimum throttle value 
with a 15 second dwell time at the initial throttle setting. 
After the elapsed dwell time, the throttle was increased 
from idle to maximum power over a 900 second interval 
(or 15 minutes). The throttle was then held at maximum 
power for 100 seconds, followed by a 900 second (15 
minute) ramp back down to the idle power level.  

Figure 4 shows the inputs used to generate the eSTORM 
training data. These plots indicated that three of the 
external engine control inputs are non-zero, one (the 14th 
stage bleed) is computed to be zero, and four are (set to) 
zero. The time histories of the three nonzero inputs (fuel 
flow, stator vane angle, and station 2.5 bleed) are not 
linearly related.  
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Figure 4 Training inputs 

The engine control system inputs shown in Figure 4 were 
used to drive the STORM SVM with the Tuning 
subsystem disabled (i.e., the STORM residuals are set to 
zero).  

Figure 5 shows the engine outputs predicted by the D01 
Customer Deck overlaid with the STORM SVM 
estimates. The results in Figure 5 indicate that the SVM 
outputs with Tuning disabled do not track the D01 deck 
outputs very well. However this is as to be expected since 
the SVM is based on the D03 Simulation Deck. 

To reduce training data variation, the residuals were 
smoothed prior to training. Smoothing was accomplished 
using a low pass filter. Smoothed data results in neural 
networks that have fewer nodes and better performance 
(smaller mean square training error) then networks that 
would be required to model the original data. 

Overlaid plots of the raw and smoothed residuals 
produced in this test case are shown in Figure 6. These 
plots indicate that the residuals can become quite large. It 
is interesting to note that the residuals appear to be 
somewhat symmetric about the full throttle plateau; 
however upon closer examination there are 'bias' 
differences in comparing the residuals for the throttle up 
operation with the throttle down operation. These bias 

differences can be seen in the input signals as well. The 
bias indicates that our attempt to approximate a piecewise 
linear signal with very slow throttle movements was not 
entirely successful. If our piecewise linear assumption 
had been correct, then the throttle up and throttle down 
data should appear symmetric for any particular throttle 
setting. 

Figure 5 Simulated engine outputs and STORM 
estimates with tuning disabled 

The smoothed residual data shown in Figure 6 was used 
for training the neural net compensator. 

We experimented with several different values of p, q and 
the number of hidden units in the MLP while developing 
the empirical model. It was found that small values of p 
and q produce good results. However, when the 
ARMA/MLP model with p=1 and q=2 was implemented 
in eSTORM, the overall results were not very good. The 
autoregressive component gives rise to a feedback path 
that uses the same output residuals as STORM. Thus, 
STORM and the neural net compensator compete against 
each other in trying to null the residual vector. 
Determining a systematic methodology for setting gains 
and time constants in the neural net compensator so that it 
doesn't interfere with the basic operation of STORM will 
be investigated in the future. 
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Figure 6 Residuals and smoothed residuals 

An alternative design to the ARMA is to remove the 
autoregressive component of model and only use the 
smoothing effect of the moving average estimator. One 
possible candidate design is p=0, q=3, and the number of 
hidden units set to 25.  

Figure 7 displays the model fit and resulting residuals for 
one of the outputs associated with this MA/MLP 
empirical model. 

As seen in Figure 7 only the slower moving mean value 
component of the residual time series is modeled using 
the MA/MLP. The removal of coarse modeling error 
component was shown to be sufficient for stabilizing the 
STORM )(ˆ tPd estimates to acceptable levels.  

Figure 7 Training results: MLP p=0 q=3 #basis 
units=25 

The p=0 (i.e. there is no AR part), q=3, #units=25 MLP 
neural net regression model was inserted into a candidate 
eSTORM design. A separate neural net is trained for each 
of the outputs. The neural net inputs are constructed from 
just the lagged samples of the engine inputs, i.e. 

[ ])3(),2(),1()(ˆ −−−Ψ= ttttr k uuu      (9) 

Figure 8 shows the comparison plots of eSTORM outputs 
versus the "real engine" outputs. These results indicate 
that the eSTORM outputs closely track the simulated 
engine outputs. 

Figure 8 eSTORM Outputs 

4. RESULTS 
We use the STORM / eSTORM tuner outputs (i.e. the 

)(ˆ tPd performance degradation vector) to assess the 
value added of including the empirical model with 
STORM to form the hybrid eSTORM model. STORM is 
operated with Tuning enabled. Note that the STORM 
results under these conditions should NOT be very good. 
STORM compensates for the differences between the 
D01 Customer Deck engine simulation and the D03 
Simulation Deck by apportioning the apparent off-
nominal performance to the )(ˆ tPd estimates. Also note 
that the STORM design used in this project is not yet 
mature for this application. A more refined version of the 
STORM algorithm will be available in future work. The 
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STORM results presented here are not an indication of 
how well STORM could work in a typical application. 
Rather, its purpose is to demonstrate the utility of 
including the neural net compensation in eSTORM. 

A test data set was generated to process through the 
STORM and eSTORM systems for algorithm validation 
purposes. The test data set was similar to the training data 
in that it included two slow throttle movements. However 
in the test data set, the engine power condition was 
initially set to the maximum throttle setting, ramped down 
to idle over a 15-minute interval, remained at idle for 
100-seconds and then ramped back to the maximum 
setting over a 15-minute interval. Different noise 
realizations were also inserted into the eSTORM inputs. 
As with the training data, only three of the eight engine 
control inputs are non-zero 

 Figure 9 shows the set of )(ˆ tPd  “performance 
degradations” calculated by STORM as it attempts to 
track the "real engine" outputs. The )(ˆ tPd represent the 
incremental change in component efficiency required to 
match model outputs to real engine outputs, in other 
words the difference between nominal and off-nominal as 
defined by the D03 SVM. In this case the )(ˆ tPd are 
forced to become quite large (up to 15% absolute error 
with about a 5% average absolute error) and must assume 
unrealistic values in several cases. Again this is primarily 
due to the D03 SVM and D01 Customer Deck mismatch 
as well as the immaturity of this particular STORM 
design. However these results form a good starting point 
for comparison of )(ˆ tPd values calculated after the 
application of the neural network compensation. 

 Figure 9 STORM )(ˆ tPd  (no neural network 
compensation) 

eSTORM was implemented using the neural networks 
developed for the up-down throttle movements and 
applied to the test data set.  Figure 10 shows the resulting 

)(ˆ tPd vector. As can be seen when comparing the 

)(ˆ tPd of  Figure 9 with  Figure 10 there is a substantial 

improvement. The eSTORM )(ˆ tPd are essentially zero-
mean, the desired result. 

 Figure 10 eSTORM )(ˆ tPd  

Simulated Engine Degradation 

To determine the impact of the neural net compensation 
when engine degradations are present, a second 
simulation was considered. In this simulation the throttle 
setting was set to a constant value (i.e. there was no 
throttle movement through out the simulation) and a 5% 
degradation was added to both fan and HPC components. 

  Figure 11 shows the resulting performance degradations 
found with eSTORM when a simulated 5% degradation is 
added to the fan.  The degradation is turned on at the mid 
point in the data.  As seen the induced degradation is 
tracked by eSTORM very well.   

Figure 12 shows a similar plot, however it is the HPC 
efficiency that is degraded 5%. As with the previous 
figure, the degradation is turned on in about the middle of 
the plot.   

 Figure 13 shows the results of including both a 5% 
degradation in the fan performance (turned on at about 
600 seconds into the data) followed by the addition of a 
5% degradation in the HPC efficiency (turned on at about 
1200 seconds into the data).  

As seen, eSTORM has the desired performance. The 
neural net compensation does indeed baseline the 
STORM processing. However it does not over 
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compensate by removing STORM’s ability to track 
degradations. eSTORM tracks the degradations very well. 

 Figure 11 eSTORM )(ˆ tPd  with 5% degraded fan 
performance 

Figure 12 eSTORM )(ˆ tPd  with 5% degraded HPC 
performance 

5. SUMMARY AND RECOMMENDATIONS 
eSTORM is a hybrid model that fuses / integrates a 
physics based engine model with an empirical neural net 
based model. Details of STORM, empirical models, and 
eSTORM development have been presented. Comparative 
results of using STORM and eSTORM on simulated 
engine data show that the hybrid approach works 
extremely well in reducing STORM modeling errors and 
biases for the conditions considered. However that 
compensation does not impact STORM’s ability to track 
degradations in the data. 

The results presented here are preliminary. They deal 
only with steady-state simulated “good” engine in steady 
state conditions. In future work for NASA we will 
include transient engine operation as well as real engine 
data. 

 Figure 13 eSTORM )(ˆ tPd  with 5% degradation of 
both the fan and HPC performance 
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